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Abstract This paper presents a new Bayesian-based method
of unconstrained handwritten offline Chinese text line rec-
ognition. In this method, a sample of a real character or
non-character in realistic handwritten text lines is jointly rec-
ognized by a traditional isolated character recognizer and a
character verifier, which requires just a moderate number
of handwritten text lines for training. To improve its ability
to distinguish between real characters and non-characters,
the isolated character recognizer is negatively trained using
a linear discriminant analysis (LDA)-based strategy, which
employs the outputs of a traditional MQDF classifier and the
LDA transform to re-compute the posterior probability of
isolated character recognition. In tests with 383 text lines in
HIT-MW database, the proposed method achieved the char-
acter-level recognition rates of 71.37% without any language
model, and 80.15% with a bi-gram language model, respec-
tively. These promising results have shown the effectiveness
of the proposed method for unconstrained handwritten off-
line Chinese text line recognition.
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1 Introduction

Unconstrained handwritten offline Chinese text line recog-
nition is currently one of the most challenging problems
in handwritten character recognition [4,6,18,20,21,23–25].
Solutions to problems in this area have potential applica-
tions, such as automatic manuscript reading and document
retrieval. The development of a method that allows for free
handwriting styles that are not specific to individual writers
of text lines is attractive, but resolving this problem involves
recognizing a text line with high accuracy, comparable to that
of human reading. One of the main challenges in achieving
this goal is the proper evaluation of segmentation hypoth-
eses containing non-characters. After pre-segmentation (as
shown in Fig. 1b) of an original text line (Fig. 1a), all possi-
ble segmentation hypotheses of a text line can be represented
in a segmentation candidate lattice (as shown in Fig. 1d),
where each node corresponds to a segmentation position in
pre-segmentation, and each edge corresponds to a sample
of a real character or non-character. Any path from the first
node to the last node in the segmentation candidate lattice
is a possible segmentation hypothesis of the text line, which
may contain lots of non-characters. Since non-characters are
extremely difficult to differentiate from characters, a segmen-
tation hypothesis containing non-characters might be evalu-
ated as the optimal choice among all possible segmentation
hypotheses (as shown in Fig. 1c), a problem that decreases
the accuracy of text line recognition.

Probabilistic model based on the maximum a posteriori
(MAP) criterion [2] is one of the frequently used methods
for segmentation hypothesis evaluation [3,4,6,18,20,21,23–
25]. Several probabilistic models utilized recognition scores
and segmentation scores to reduce errors in text line evalua-
tion [4,6,18]. And others employed both character recogniz-
ers and verifiers to discriminate between real characters and
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Fig. 1 Examples of mis-recognition of an input text line. a An orig-

inal text line of “ ”, b text line pre-segmentation, c
the optimal segmentation hypothesis recognized as “ ,
and d the segmentation candidate lattice corresponding to (b), where
the optimal segmentation hypothesis is linked by the dark line

non-characters [3,23–25]. However, the trade-off between
evaluation robustness and computational complexity is an
important concern for these probabilistic models. Although
first type of probabilistic models is relatively easy in com-
putation, the assumptions for calculating the segmentation
scores are too empirical to robustly evaluate realistic hand-
written text lines. On the other hand, in the second type of
probabilistic models, character verifiers can provide satis-
factory robustness in discriminating characters from non-
characters. However, lots of verifiers might be required in
a large character set (such as Chinese), which is computa-
tionally prohibitive.

Another problem with most existing probabilistic mod-
els is that they use traditional isolated character recognizers
for recognizing both characters and non-characters, and the
latter are usually mis-recognized as the former. For instance,
[20,21,23–25] employed class conditional probability densi-
ties and [4,6] utilized posterior probabilities, respectively, of
traditional character recognition, which have not introduced
non-character resistance into their models of segmentation
hypothesis evaluation. This problem might be solved by the
negative training of an isolated character recognizer. For dis-
tance classifiers used in Chinese character recognition, the
following negative training strategies have been frequently
used: the k-means clustering strategy [8] and the thresholding
strategy [13]. However, in the k-means clustering strategy, the
cluster number k of the class of non-characters is often empir-
ically set, which is a trial-and-error process. In compari-
son, the thresholding strategy simply discards non-characters
using a pre-defined threshold whereas failed to output a pos-
terior probability for the class of non-characters as k-means
clustering strategy does. Both strategies own obvious draw-
backs for the negative training of distance classifiers.

In this paper, a novel probabilistic model is proposed to
evaluate possible segmentation hypotheses of a text line. The

probabilistic model can be implemented using just two classi-
fiers, an isolated character recognizer and a character verifier,
in a simple way that follows Bayesian rules. In addition, a
linear discriminant analysis (LDA)-based negative training
strategy is applied to an isolated character recognizer. With-
out any requirement of empirical parameters, this strategy is
able to provide the posterior probability of non-characters in a
distance classifier, which further improves the performance
of the proposed probabilistic model. Experiments with the
HIT-MW database [19] showed that the proposed method
works well in unconstrained handwritten offline Chinese text
line recognition and compares favorably with previous meth-
ods tested on the same data.

The rest of this paper is organized as follows: Sect. 2
presents an overview of previous works on unconstrained
handwritten offline Chinese text line recognition. Section 3
introduces a Bayesian-based probabilistic model for segmen-
tation hypothesis evaluation. Section 4 discusses the LDA-
based negative training strategy for distance classifiers. Sec-
tion 5 describes the experimental results on unconstrained
handwritten offline Chinese text line recognition, and Sect. 6
draws conclusions from the experiments.

2 Previous works

In previous studies, methods used for unconstrained hand-
written offline Chinese text line recognition fall into two
categories: segmentation-based recognition [4,6,18,21,23–
25] and segmentation-free recognition [20]. In segmenta-
tion-based recognition, a text line is first pre-segmented into
characters or radicals. All possible segmentation hypothe-
ses are then evaluated, among which the optimal hypothe-
ses are regarded as the recognition candidates of the input
text line. One of the main challenges in segmentation-based
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Fig. 2 Framework of the segmentation-based methods of unconstrained handwritten offline Chinese text line recognition

recognition is that a large number of non-characters are gen-
erated by pre-segmentation, which severely interferes with
the evaluation of possible segmentation hypotheses. Incor-
rect evaluation may result in serious errors in the final text
line recognition, as shown in Fig. 1c.

In contrast, segmentation-free recognition requires no
explicit segmentation of a text line. Instead, a whole text line
is modeled using mathematical tools such as hidden Markov
models (HMMs), and the recognition candidates of the text
line are given by finding the optimal matches of the model.
Because precise modeling requires a large number of training
samples of realistic handwritten text lines, segmentation-free
recognition tends to suffer from the problem of data sparse-
ness [20], especially for a large character set such as Chinese
characters, which may lead to a sharp deterioration in its
recognition performance.

In previous studies of unconstrained handwritten offline
Chinese text line recognition, segmentation-based recog-
nition approaches have been found to perform much bet-
ter than segmentation-free recognition methods [20,21]. In
the two most recent studies using data from the HIT-MW
database, character-level recognition rates were 44.22% for
segmentation-free recognition [20] and 57.60% for seg-
mentation-based recognition [21], without using a language
model. A study using the segmentation-based recognition
method reported that higher recognition rates of 77.18 and
78.44% were achieved using a bi-gram language model and
a tri-gram language model, respectively [21]. The proposed
method also adopts the general framework of segmentation-
based recognition methods, as illustrated in Fig. 2. In the next
sections, we will focus on the segmentation hypothesis eval-
uation module and introduce a Bayesian-based probabilistic
model.

3 The proposed probabilistic model

In segmentation-based text line recognition methods, the
optimal recognition candidate C∗ of a handwritten text line
can be evaluated as follows according to MAP [2] criterion:

C∗ = arg max
C

{log P(C |E)}, (1)

where E is a sequence of characters or radicals produced by
text line pre-segmentation, C is a possible recognition candi-
date of the text line, and P(C |E) is the posterior probability
of C given E . For the probability P(C |E) on the right hand

side of (1), we introduce two hidden variables S and V , where
S is the segmentation hypothesis that can be interpreted as C ,
and V is a binary sequence denoting the validity of each seg-
ment in S. As illustrated in Fig. 3, these sequences E, S, C ,
and V can be unfolded as follows:
⎧
⎪⎪⎨

⎪⎪⎩

E = {e1, e2, . . ., eM }
S = {s1, s2, . . ., sK }
C = {c1, c2, . . ., cK }
V = {v1, v2, . . ., vK }

, (2)

where ei (i = 1, 2, . . ., M) is a character or radical, si (i =
1, 2, . . ., K ) is a text line segment combined by several neigh-
boring e j ( j = 1, 2, . . ., M), ci (i = 1, 2, . . ., K ) is the char-
acter recognition candidate of si , and vi (i = 1, 2, . . ., K ) is
a binary value denoting the validity of si (vi = 1 means that
si is a character or otherwise a non-character).

In interpreting a segmentation hypothesis of a text line, we
may notice the presence of invalid segments (non-characters,
e.g., s4 and s26 in Fig. 3) which should not be recognized as
any real character. However, since a traditional isolated char-
acter recognizer always recognize a non-character as a real
character (e.g., c4 and c26 in Fig. 3), it is improper to directly
apply traditional isolated character recognition to recognize
each segment si (i = 1, 2, . . ., K ) in a segmentation hypoth-
esis. To solve this problem, we employ a validity constraint
described by a binary value vi ∈ {0, 1} for recognizing each
segment si . Thus, for any possible segmentation hypothesis
S′ given E , and for any possible binary sequence V ′ given
S′, the probability P(C |E) on the right hand side of (1) can
be rewritten as follows:

P(C |E) =
∑

V ′

∑

S′
P(C, S′, V ′|E) ≈ P(C, S, V0|E)

= P(C |S, V0, E) ∗ P(V0|S, E) ∗ P(S|E), (3)

where S is the segmentation hypothesis coupled with the
interpretation sequence C , and V0 = {v1 = 1, v2 = 1, . . .,

vK = 1} is an all-one sequence denoting that each segment
si (i = 1, 2, . . ., K ) in the segmentation hypothesis S is a
real character, so that the joint probability P(C, S, V0|E) is
dominant over any other probability P(C, S′, V ′|E)(∀S′ �=
S, V ′ �= V0).

The first probability P(C |S, V0, E) on the right hand side
of (3) can be unfolded as

P(C |S, V0, E) =
K∏

i=1

P (ci |c1, c2, . . ., ci−1, s1, s2, . . ., sK ,
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Fig. 3 Meaning of the variables I, E, S, V , and C in segmentation-based text line recognition

v1 = 1, v2 = 1, . . ., vK = 1, e1, e2, . . ., eM )

=
K∏

i=1

P(ci |c1, c2, . . ., ci−1, si , vi = 1)

=
K∏

i=1

{P(ci |c1, c2, . . ., ci−1) ∗ P(ci |si , vi = 1)/P(ci )}

≈
K∏

i=1

{
P(ci |ci−n+1, ci−n+2, . . ., ci−1) ∗

(P(ci |s_normi , vi = 1))ki /P(ci )
ki

}
, (4)

where ki (i = 1, 2, . . ., K ) is the number of characters or
radicals contained in the segment si , and s_normi is the nor-
malized segment si used for isolated character recognition.
The third equal mark of (4) comes from the assumption that
the linguistic contexts c1, c2, . . ., ci−1 are conditionally inde-
pendent of the procedure of isolated character recognition,
which meets
{

P(si |c1, c2, . . ., ci , vi = 1) = P(si |ci , vi = 1)

P(si |c1, c2, . . ., ci−1, vi = 1) = P(si |vi = 1)
(5)

And the fourth equal mark of (4) is based on the following
approximation:
⎧
⎨

⎩

P(ci |c1, c2, . . ., ci−1)≈ P(ci |ci−n+1, .ci−n+2, .., ci−1)

P(ci |si , vi = 1) = P(ci |ei1 , ei2 , . . ., eiki
, vi = 1)

≈ (P(ci |s_normi , vi = 1))ki /P(ci )
ki −1

,

(6)

where e j ( j = i1, i2, . . ., iki ) is any character or radical com-
posing the segment si . The first line in (6) approximates
the linguistic contexts of character ci using its previous

n characters. And the second line in (6) approximates the
procedure of recognizing ki neighboring characters or radi-
cals eii , ei2 , . . ., eiki

by isolated character recognition, where
the power index ki empirically compensates for the ki parts
of patterns in eii , ei2 , . . ., eiki

[21,23].
The second probability P(V0|S, E) on the right hand side

of (3) can be unfolded as

P(V0|S, E) =
K∏

i=1

P (vi = 1|v1 =1, v2 =1, . . ., vi−1 = 1,

s1, s2, . . ., sK , e1, e2, . . ., eM )

≈
K∏

i=1

P(vi = 1|si−1, si , si+1). (7)

The second line in (7) is based on the assumption that the
validity of a segment si (i = 1, 2, . . ., K ) largely depends on
si itself and its two nearest neighbors si−1, si+1.

And the third probability P(S|E) on the right hand
side of (3) can be treated as a constant. As will be dis-
cussed in the subsequential subsections, the probability
P(ci |s_normi , vi = 1) on the last line of (4) and the prob-
ability P(vi = 1|si−1, si , si+1) on the last line of (7) can
be calculated by isolated character recognition and character
verification, respectively.

3.1 Isolated character recognition

In Chinese character recognition, the classifier with the
form of modified quadratic discriminant functions (MQDF)
[11,15] has shown state-of-the-art recognition accuracy.
Since a traditional MQDF classifier is trained and tested
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both on real characters, the normalized segment s_normi (i =
1, 2, . . ., K ) fed into the classifier is implicitly treated as a
real character. The posterior probability P(ci |s_normi , vi =
1) of a traditional MQDF classifier can be obtained as fol-
lows:

P(ci |s_normi , vi =1) = p(s_normi |ci , vi =1)∗ P(ci )
∑N

j=1 p(s_normi |c j , v j =1)∗ P(c j )

= p(s_normi |ci , vi = 1)
∑N

j=1 p(s_normi |c j , v j = 1)
,

(8)

where N is the number of character classes in the
MQDF classifier, P(c j )( j = 1, 2, . . ., N ) is the prior
probability assumed to follow a uniform distribution, and
p(s_normi |ci , vi = 1) is the conditional probability density
of the normalized segment s_normi given class ci . When
p(s_normi |ci , vi = 1) is under Gaussian distribution, it can
be computed as

p(s_normi |ci , vi = 1) ∝ exp(−d(s_normi ; ci , vi = 1)/α),

(9)

where d(s_normi ; ci , vi = 1) is the output of class ci given
the normalized segment s_normi in the MQDF classifier, and
α is a positive constant to tune d(s_normi ; ci , vi = 1) to a
reasonable scale to avoid the zero value after taking negative
exponential function. Empirically, we choose the maximal
integer l that satisfies α = 2l and the following constraints:
{

exp(−d(s_normi ; ccand_10
i , vi = 1)/α) ≤ 10−10

P(ccand_1
i |s_normi , vi = 1) ≥ 0.5

, (10)

where ccand_ j
i ( j = 1, 10) is the top j th recognition candidate

of the normalized segment s_normi , d(s_normi ; ccand_10
i ,

vi = 1) is the output of the top 10th recognition candidate
of s_normi in the classifier, and P(ccand_1

i |s_normi , vi = 1)

is the posterior probability of the topmost recognition can-
didate of s_normi calculated by (8). By observations on a
training set of real characters, the integer l is set as 9 and the
constant α is set as 512.

3.2 Character verification

The process of verifying each segment si (i = 1, 2, . . ., K )

can be performed using another MQDF classifier, which
includes the following five classes:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω0 : Chinese character
ω1 : digit
ω2 : punctuation
ω3 : over-segmented character
ω4 : under-segmented character

(11)

And the feature vector fed into this MQDF classifier is
defined as

f i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
wi
w

,
hi
wi

, d(s_normi ; ccand_1
i , vi = 1),

P(ccand_1
i |s_normi , vi = 1),

min(1,
di,i+1

w
), max

(
1,

di,i+1
w

)]T
, if i = 1

[
wi
w

,
hi
wi

, d(s_normi ; ccand_1
i , vi = 1),

P(ccand_1
i |s_normi , vi = 1),

min
(

di−1,i
w

,
di,i+1

w

)
, max

(
di−1,i

w
,

di,i+1
w

)]T
,

if 1 < i < K[
wi
w

,
hi
wi

, d(s_normi ; ccand_1
i , vi = 1),

P(ccand_1
i |s_normi , vi = 1),

min
(

di−1,i
w

, 1
)

, max
(

di−1,i
w

, 1
)]T

, if i = K

, (12)

where w is the average width of all characters or radi-
cals generated from text line pre-segmentation, wi is the
width of the i th segment si , hi is the height of si , di−1,i is
the horizontal gravity distance between segments si−1 and
si , di,i+1 is the horizontal gravity distance between si and
si+1, d(s_normi ; ccand_1

i , vi = 1) and P(ccand_1
i |s_normi ,

vi = 1) are defined in (10). By observations on a training
set of handwritten text lines, we notice that the probability
density of each dimension of fi almost renders a single peak
in each class defined in (11), which is suitable for an MQDF
classifier, as illustrated in Fig. 4.

The probability P(vi = 1|si , si−1, si+1) of character ver-
ification can then be transformed to the posterior probability
of a five-class MQDF classifier according to the following:

P(vi = 1|si−1, si , si+1)

=
4∑

j=0

P(vi = 1, si ∈ ω j |si−1, si , si+1)

≈ P(vi = 1, si ∈ ωsi |si−1, si , si+1)

=
{

P(si ∈ ωsi |si−1, si , si+1), if ωsi ∈ {ω0, ω1, ω2},
0, if ωsi ∈ {ω3, ω4}

≈
{

(P(ωsi |fi ))
ki , if ωsi ∈ {ω0, ω1, ω2}

0, if ωsi ∈ {ω3, ω4} (13)

where ωsi is the class defined in (11) that segment si

most probably belongs to, so that the joint probability
P(vi = 1, si ∈ ωsi |si−1, si , si+1) is dominant over any other
probability P(vi = 1, si ∈ ω j |si−1, si , si+1)(∀ω j �= ωsi ), fi

is the feature vector defined in (12), ki is the number of char-
acters or radicals composing the segment si , and the pos-
terior probability P(ωsi |fi ) can be calculated similar to (8).
The third equal mark in (13) is based on the assumption that
a valid segment just comes from Chinese characters, digits,
and punctuations. The fourth equal mark in (13) approxi-
mates the probability P(si ∈ ωsi |si−1, si , si+1) using the
posterior probability of a five-class MQDF classifier, where
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Fig. 4 Examples of the probability densities of the first dimension of the vector defined in (12) among a Chinese characters, b digits, c punctuations,
d over-segmented characters, and e under-segmented characters

the power index ki empirically compensates for the ki parts
of patterns in segment si (similar to the approximation in (4)).

3.3 The implementation of the probabilistic model

By taking logarithmic function on both sides of (3), and
substituting (4), (7), and (13) into (3) as well as ignoring the
constant term P(S|E), the proposed probabilistic model for
handwritten text line recognition can be rewritten as follows:

log P(C |E) ≈
K∑

i=1

log P(ci |ci−n+1, ci−n+2, . . ., ci−1)

−
K∑

i=1

ki∗ log P(ci ),

+
K∑

i=1

ki∗ log P(ci |s_normi , vi = 1)

+
K∑

i=1

ki∗ log P(ωci |fi ) (14)

where ωci is the class defined in (11) that the charac-
ter recognition candidate ci belongs to, fi is the feature
vector defined in (12), ki is the number of characters or
radicals (generated by pre-segmentation) composing the
segment si , the probability P(ci |s_normi , vi = 1) is the
posterior probability of isolated character recognition cal-
culated by (8), the probability P(ωci |fi ) is the posterior
probability of a five-class MQDF classifier calculated sim-
ilar to (8), the probabilities P(ci |ci−n+1, ci−n+2, . . ., ci−1)

and P(ci ) can be given by an n-gram language model (note

that in our experiments the prior probability P(ci ) was
empirically regarded to follow a uniform distribution, thus
the second term in (14) became a constant M∗ log P(ci )

which can be omitted in path searching process, where M
is the total number of segments produced from text line pre-
segmentation).

The implementation of the above probabilistic model is
illustrated in Fig. 5. Given a possible segmentation hypoth-
esis S = {s1, s2, . . .si , . . ., sK }, firstly, each segment si (i =
1, 2, . . ., K ) is recognized by an MQDF classifier for iso-
lated character recognition. Another MQDF classifier is then
employed to verify the segment si . Both of the two classifi-
ers jointly decide on the posterior probability of recognizing
segment si no matter it is a real character or a non-character.
When considering the n-gram language model, the segmen-
tation hypothesis can be evaluated by simple summation or
subtraction over the log-likelihood of each probability, as
indicated in (14).

4 LDA-based negative training for isolated character
recognition

In the proposed probabilistic model described in (14), the
fourth dimension of feature vector fi defined in (12) for
character verification comes from the posterior probability
of isolated character recognition. However, a traditional iso-
lated character recognizer cannot correctly recognize non-
characters, so that the above posterior probability may not be
accurate at presence of non-characters in isolated char-
acter recognition. To solve this problem, we propose an
LDA-based negative training strategy for isolated character
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Fig. 5 Flowchart of the proposed probabilistic model to evaluate a possible segmentation hypothesis

recognition, which is discussed in the context of an MQDF
classifier but is also applicable to other kinds of distance
classifiers.

In the negative training of distance classifiers (such as an
MQDF classifier), a class of non-characters can be added to
the original N classes of real characters, modifying the pos-
terior probabilities of the total N + 1 classes. According to
the following property of a joint probability:

P(AB) = P(B|A) ∗ P(A) = P(A), if P(B|A) = 1, (15)

the posterior probability of the MQDF classifier, which
includes a class of non-characters, can be calculated as

P(ωi |s)=

⎧
⎪⎪⎨

⎪⎪⎩

P(ωi ,�pos|s)= P(ωi |�pos, s) ∗ P(�pos|s),
if i = 1, 2, . . .N

P(�neg|s),
if i = N + 1

,(16)

where s is the segment fed into the MQDF classifier,
ωi (i = 1, 2, . . ., N + 1) is the i th class in the MQDF clas-
sifier, �pos = ⋃N

i=1 ωi represents the class of real charac-
ters, �neg = ωN+1 represents the class of non-characters,
P(ωi |�pos, s)(i = 1, 2, . . ., N ) is the posterior probability
in a traditional MQDF classifier calculated by (8), P(�pos|s)
is the posterior probability that segment s is a real character,
and P(�neg|s) is the posterior probability that segment s is
a non-character. The last two probabilities, P(�pos|s) and
P(�neg|s), can be calculated as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P(�pos|s) = ps (s|�pos)P(�pos)

ps (s|�pos)P(�pos)+ps (s|�neg)P(�neg)

= ps (s|�pos)

ps (s|�pos)+ps (s|�neg)

P(�neg|s) = ps (s|�neg)P(�neg)

ps (s|�pos)P(�pos)+ps (s|�neg)P(�neg)

= ps (s|�neg)

ps (s|�pos)+ps (s|�neg)

, (17)

where P(�pos) and P(�neg) are the prior probabilities
assumed to follow a uniform distribution, ps(s|�pos) and
ps(s|�neg) are the conditional probability densities of seg-
ment s in class �pos and class �neg, respectively. To calculate
the above two conditional probability densities, we assume
that the output of each class in a traditional MQDF classifier
contains relevant information on revealing the validity of the

input segment s, as indicated in previous methods of charac-
ter recognition and verification [5,7,14]. Then, we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ps(s|�pos) ≈ pfN (fN |�pos) = pt (t |�pos)

= 1√
2πσpos

exp

{

− (t−μpos)
2

2σ 2
pos

}

ps(s|�neg) ≈ pfN (fN |�neg)

= pt (t |�neg) = 1√
2πσneg

exp

{

− (t−μneg)
2

2σ 2
neg

}
, (18)

where fN = [d(ccand_1; s,�pos), d(ccand_2; s,�pos), . . .,

d(ccand_N ; s,�pos)]T is a vector consisting of the output
d(ccand_i ; s,�pos)(i = 1, 2, . . ., N ) of the top i th character
recognition candidate ccand_i in a traditional MQDF classifier
given segment s, and t = W T

ldafN is the scalar generated by
LDA transform of vector fN , where Wlda is the LDA trans-
form matrix defined as [2]
{

Wlda = S−1
w (μ1 − μ2)

Sw = ∑2
i=1

∑Mi
j=1(x

j
i − μi )(x

j
i − μi )

T , (19)

where μi (i = 1, 2) is the mean feature vector of the i th class
(i = 0 is class �pos and i = 1 is class �neg as defined in
(16)), Sw is the within-class matrix, Mi (i = 1, 2) is the num-
ber of samples in the i th class, x j

i (i = 1, 2, j = 1, . . ., Mi )

is the feature vector of the j th sample in the i th class.
By observations on a set of training text lines, the probabil-

ity density of scalar t in either class �pos or �neg, p(t |�pos)

or p(t |�neg) defined in (18), approximately follows a Gauss-
ian distribution, as illustrated in Fig. 6. Thus, the four param-
eters on the right hand side of (18), μpos, σpos, μneg, and σneg,
can be determined using maximum likelihood estimation [2]
after manually labeling whether the segment s is a real char-
acter or non-character in training phase.

In summary, the process of the LDA-based negative train-
ing for an MQDF classifier can be illustrated in Fig. 7.
Firstly, a traditional MQDF classifier is employed to recog-
nize the segment s, whose outputs form an N -dimensional
vector fN define in (18). LDA is then applied to transforming
the vector fN to a scalar t defined in (18). After estimat-
ing the means and variances of the scalar t in two classes,
�pos and �neg, respectively, the probabilities P(�pos|s) and
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Fig. 6 The probability densities of scalar t defined in (19) in class of
real characters or non-characters

P(�neg|s) can be determined by (17) and (18). Finally, the
posterior probability P(ωi |s)(i = 1, 2, . . ., N + 1) in the
MQDF classifier, which includes a class of non-characters,
can be output directly for negative samples or indirectly for
positive samples using simple multiplication, as indicated
in (16). It is worthwhile to mention that we processed this
posterior probability as follows before applying it to the third
term of (14): we considered only the classes of real characters
in top L(L = 1, 2, . . .) recognition candidates by excluding
any class of non-characters and putting forward its subse-
quent classes of real characters. This did not conflict with
our understanding of isolated character recognition, because
the much lower posterior probabilities of the classes subse-
quent to a non-character class also indicated the more reli-
able interpretation of a sample as a non-character. Then, the
probability P(ωi |s)(i = 1, 2, . . ., N + 1) calculated by (16)
became P(ωi |s,�pos)(i = 1, 2, . . ., N ) since the candidate
classes were restricted to real characters as if the segment s
was of a real character.

5 Experimental results

5.1 Experimental setup

The experiments consisted of two parts: one was for the LDA-
based negative training strategy and the other was for the
proposed probabilistic model of handwritten text line rec-
ognition. For the experiments on isolated character recogni-
tion, the following datasets were employed as training data:
105 sets of Chinese characters from the HCL2000 database
[22], 97 sets of Chinese characters and 43 sets of digits
from the SCUT-IRAC database [9], 295 sets of characters
including Chinese characters, digits, and punctuation marks
from the CASIA-HWDB1.1 database [16] (Chinese charac-
ters included the 3,755 classes in the first-level set of the

GB2312-80, digits included the 10 classes from integer 0–9,
and punctuation marks included 14 frequently used classes
such as ! % ( ) : ; ? , ` ◦ “” � ). The miscellaneous training
samples from different databases may improve the generality
of the MQDF classifier. The testing data for isolated charac-
ter recognition consisted of the characters labeled in the 383
text lines in the test set of HIT-MW database [19], including
7,401 samples of Chinese characters (in total 1,319 classes),
226 samples of digits (in total 10 classes), and 806 samples
of punctuation marks (in total 24 classes). For handwritten
text line recognition, we adopted the randomly selected 100
text lines in the train set of HIT-MW database as training
data, and the whole 383 text lines in the test set of HIT-MW
database as testing data, respectively. And the experimental
platform was a PC with a dual-core 2.66 GHz CPU and 4
G of memory. All the experiments were implemented using
VC++2008 except for the module of pre-segmentation which
was firstly written using Matlab2008 and then was invoked
in a VC++2008 project.

For pre-segmentation of a text line, we adopted the algo-
rithm proposed in [12] to generate curved segmentation
paths, which sequentially deals with naturally separated
characters, overlapped characters, and touched characters in
unconstrained handwritten offline Chinese text lines.

For an n-gram language model, we adopted the same bi-
gram language model used in [21], which is trained on a Chi-
nese corpus from the Chinese Linguistic Data Consortium
(CLDC) and modified with Katz smoothing and entropy-
based pruning. The top ten recognition candidates in isolated
character recognition were preserved when using the bi-gram
language model.

For searching for the optimal recognition candidate of a
text line, we employed a beam search algorithm [13,25],
which preserved the top ten partial paths at each step of
path searching. As the proposed probabilistic model in (14)
needed to consider both the previous neighbor si−1 and the
next neighbors si+1 of the current segment si , we assumed
that the search direction from segment index i = 1 to i = K
was forward direction, and that the last segment on the pre-
viously selected partial path adjacent to si was its previous
neighbor si−1, and that the character or radical generated by
pre-segmentation next to si was its next neighbor si+1. As the
feature vector for character verification defined in (12) sim-
ply measured the horizontal gravity distance between si and
its neighboring segment, the above assumption worked sat-
isfactorily in path searching given the proposed probabilistic
model. Furthermore, to accelerate the searching process, we
adopted a two-stage searching strategy: firstly, without any
language model, the above beam search algorithm was per-
formed to seek for the top ten paths of a text line given (14)
preserving only the last two terms, where for isolated char-
acter recognition, only the topmost candidate character was
preserved to limit the searching space. Then at the second
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Fig. 7 Flowchart of the LDA-based negative training for an MQDF classifier

stage of searching, each of these ten paths was treated as
an unrecognized segmentation configuration of the text line
which needed to be re-evaluated given (14). With a bi-gram
language model, the best recognition candidate of a segmen-
tation configuration was found using Viterbi algorithm [17],
where for isolated character recognition, the top ten candi-
date characters were preserved. Finally, the searching results
of these ten paths were re-ranked, in order to get the optimal
segmentation hypothesis and the corresponding interpreta-
tion of the input text line.

For training an isolated character recognizer, maximum
likelihood estimation [2] was employed to determine the
parameters of the classifier. Each input segment was firstly
resized to 64∗64 using linear normalization and then divided
to 8∗8 meshes by local elastic meshing [10]. At the center of
each mesh, 8-directional gradient features [1] were extracted.
An LDA transform was then applied to reducing the original
512-dimensional feature vector to a 160-dimensional feature
vector, and the latter was fed into the recognizer.

For training the character verifier defined in (13), the sam-
ples of each class were collected from realistic handwritten
text lines as follows: given a segmentation candidate lattice
(see Fig. 8b) constructed form text line pre-segmentation,
and the ground-truth segmentation positions of a text line
(see Fig. 8a), we marked at each segmentation position a cor-
rect sign if a corresponding node existed in the segmentation
candidate lattice, or a missing sign otherwise (see Fig. 8c).
For each edge in the segmentation candidate lattice, it was
treated as a real character if its two end nodes were both
marked correct signs and meanwhile excluding any middle
node marked with correct or missing sign. Otherwise, it is
regarded as a non-character. The class label ω j ( j = 0, 1, 2,
defined in (11)) of a real character was assigned according
to the ground-truth content of the text line (known before-
hand), whereas ω j ( j = 3, 4) of a non-character was assigned
according to whether the edge contained any middle node
marked with a correct or missing sign. In the 100 text lines
for training as mentioned above, we collected 1,832 samples
of Chinese characters, 49 samples of digits, 201 samples of
punctuations, 3,229 samples of over-segmented characters
and 7,328 samples of under-segmented characters. With the
feature vector defined in (12), the parameters of the five-class

MQDF classifier for character verification can be determined
using maximum likelihood estimation [2].

5.2 Results of LDA-based negative training

We trained an MQDF classifier using the LDA-based neg-
ative training strategy. The real characters for training the
classifier were detailed at the beginning of Sect. 5.1, and
the non-characters for training the classifier consisting of
the 10,557 non-character samples (3,229 samples of over-
segmented characters and 7,328 samples of under-segmented
characters) collected from the 100 training text lines as
described at the end of Sect. 5.1. The MQDF classifier was
then tested both on character level and text line level using
the 383 text lines as detailed in Sect. 5.1, to show its perfor-
mance on distinguishing between real characters and non-
characters.

For comparison, we also trained and tested the MQDF
classifier with two different negative training strategies:
k-means clustering [8] and thresholding [13], on the same
data. In k-means clustering strategy, the probability density
of non-character samples was jointly approximated using
k different Gaussian functions, where k was an empirical
value set by observations of non-characters. In experiments,
we empirically set k at 50. It should be noted that a new
training procedure would be needed for the MQDF classifier
whenever the cluster number k changed, even if the training
samples of both real characters and non-characters remained
unchanged. This added the computational burden to select-
ing a proper value of k. And in thresholding strategy, an
input sample was treated as a non-character and rejected if
its output of the topmost recognition candidate in a tradi-
tional MQDF classifier, d(ccand_1; s,�pos) defined in (18),
exceeded a threshold. In experiments, we determined the
threshold T as follows: by observations of the probability
density of d(ccand_1; s,�pos) in class of either real charac-
ters or non-characters, we assumed that the intersection point
of the two probability density curves was the threshold T , as
illustrated in Fig. 9.

Two groups of experiments were conducted to compare
these different negative training strategies: one was on the
level of isolated character recognition and the other was
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Fig. 8 Collecting training samples for a five-class MQDF classifier. a The ground-truth segmentation positions of a text line, b the segmentation
candidate lattice of the text line, and c the collected training samples

Fig. 9 Probability densities of d(ccand_1; s, �pos) defined in (18) in
class of real characters or non-characters

on the level of text line recognition. In the experiments
of isolated character recognition, the testing data were the
labeled characters in the 383 text lines of HIT-MW dataset,
as described at the beginning of Sect. 5.1. For the reasons
stated at the end of Sect. 4, we just adopted the classes of real
characters in the top L(L = 1, 2, . . .) recognition candidates
of isolated character recognition, by excluding any class of
non-characters and putting forward its subsequent classes of
real characters. On the other hand, in the experiments of text
line recognition, we used the 383 text lines in test set of HIT-
MW dataset as testing data, as described at the beginning
of Sect. 5.1. To evaluate possible segmentation hypotheses
of a text line, we just preserved the third term in Eq. (14)
(P(C |E) = ∑K

i=1ki∗ log P(ci |s_normi , vi = 1)), where
the correctness of isolated character recognition decided on
the accuracy of text line recognition. The measurements of
the accuracy of text line recognition, correct recognition rate
CR and segmentation measure F , were defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C R = NCc/N Tc

F = 2/(R−1 + P−1)

R = NCs/N Ts

P = NCs/N As

, (20)

where NCc is the number of correctly recognized charac-
ters in the optimal segmentation hypotheses of text lines,
N Tc is the number of characters in text lines, R is correct
segmentation rate, P is valid segmentation rate, NCs is the
number of correct segmentation positions in the optimal seg-
mentation hypotheses of text lines, N As is the number of all
segmentation positions in the optimal segmentation hypoth-
eses of text lines, and N Ts is the number of ground-truth
segmentation positions in text lines. It is worth to note that
the number of the correctly recognized characters in a text
line was counted as follows: for each character in the optimal
segmentation hypothesis of a text line, it might be aligned to
a ground-truth character provided: (i) its image overlapped
with the ground-truth position of this ground-truth character
and (ii) this ground-truth character has not been aligned to any
correctly recognized character in the optimal segmentation
hypothesis. Check from left to right in the text line all possibly
aligned ground-truth characters of the currently visited char-
acter. If the label of currently checked ground-truth character
was the same as of the currently visited character, then the
latter was treated to be correctly recognized and meanwhile
be aligned to the former, so that we can stop this checking
process. Otherwise, if none of these possibly aligned ground-
truth characters had the same label as the currently visited
character, the latter was regarded to be wrongly recognized.
We repeated the above process from the beginning to the end
of the text line until every character in the optimal segmen-
tation hypothesis had been visited. The results of the above
two groups of experiments were listed in Table 1 and Table 2,
respectively.
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Table 1 Correct recognition
rates (%) of isolated character
recognition using different
training strategies

Bold values emphasize the best
results achieved in comparison
and their corresponding
conditions in comparison

Negative training Traditional training

Thresholding [13] k-means clustering (k = 50) [8] LDA-based
method

Top 1 68.16 77.21 77.36 77.36

Top 5 74.94 86.12 86.33 86.33

Top 10 78.60 91.34 91.89 91.89

Table 2 Results of text line
recognition preserving only the
third term in (14) with different
training strategies

Bold values emphasize the best
results achieved in comparison
and their corresponding
conditions in comparison

Negative training Traditional training

Thresholding
[13]

k-means cluster-
ing (k = 50) [8]

LDA-based
method

CR (%) 50.55 61.86 64.27 52.51

F (%) 79.87 84.62 86.92 77.63

Time (s/line) 20.25 25.38 25.23 24.96

From Table 1, we can see that the thresholding strategy
achieved the lowest accuracies in isolated character recog-
nition, since the real character mis-recognized as a non-
character was directly rejected, which may sharply reduce
the number of correctly recognized characters. The character
recognition rates of k-means clustering strategy slightly fluc-
tuated around those of a traditional MQDF classifier, since
the addition of k clusters of non-characters to a traditional
MQDF classifier has changed the covariances of each class
in the original classifier even if the training samples of real
characters remained unchanged. The proposed LDA-based
negative training strategy kept the same character recogni-
tion rates as in a traditional MQDF classifier. This is because
the proposed strategy didn’t need to change the parameters
(such as mean, co-variance) of each real character class in
a traditional MQDF classifier, and then kept unchanged the
order and labels of the recognition candidates of real charac-
ters in the classifier. By excluding any class of non-charac-
ters from the top L(L = 1, 2, . . .) recognition candidates (as
described at the end of Sect. 4), the remaining recognition
candidates in a negatively trained classifier were the same as
in a traditional classifier.

From Table 2, we can see that the negative training strat-
egies were helpful to improve the accuracies of text line
recognition, except for the thresholding strategy. This was
because thresholding strategy simply rejected an input sam-
ple instead of adjusting its posterior probability, and the false-
negative errors in character rejection may lead to lower recog-
nition accuracy. The proposed LDA-based negative training
strategy performed best among the three negative training
strategies in text line recognition. It achieved a higher recog-
nition rate (64.27%) than k-means clustering did (61.68%) by
2.41%, which suggested that the proposed strategy of poster-

ior probability estimation was more suitable than the empir-
ical approximation by using k different Gaussian functions,
as in k-means clustering strategy.

5.3 Results of Bayesian-based probabilistic model

We applied the proposed probabilistic model in (14) to uncon-
strained handwritten offline Chinese text line recognition,
with the 383 text lines for testing as detailed in Sect. 5.1.
Two groups of experiments were conducted to test the per-
formance of the proposed model on text line recognition: one
was the proposed model under different conditions and the
other was the comparison of the proposed model with other
two models listed below [4,21]:

log P(C |E) ≈
K∑

i=1

log P(ci |ci−1)

+
K∑

i=1

ki∗ log P(s_normi |ci ), (21)

and

log P(C |E) ≈
K∑

i=1

log P(ci |ci−1) −
K∑

i=1

ki∗ log P(ci )

+
K∑

i=1

ki∗ log P(ci |s_normi , vi = 1)

+
3∑

j=1

log P( f ( j)
1 , f ( j)

2 , . . ., f ( j)
K ), (22)
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Table 3 Results of text line recognition using the proposed probabilistic model (14) under different conditions

Cond.1 Cond.2 Cond.3 Cond.4

N/A Bi-gram N/A Bi-gram N/A Bi-gram N/A Bi-gram

CR (%) 52.51 59.26 64.27 73.02 65.40 73.72 71.37 80.15

F (%) 77.63 78.97 86.92 88.28 89.35 90.00 92.03 92.79

Time (s/line) 24.96 28.11 25.23 29.27 26.38 31.77 27.99 32.07

N/A means that no language model is applied
Bold values emphasize the best results achieved in comparison and their corresponding conditions in comparison

where the probability P(s_normi |ci ) was the conditional
probability of the normalized segment s_normi given class
ci in an isolated character recognizer, the value f ( j)

i (i =
1, 2, . . ., K , j = 1, 2, 3) was the j th dimension of the
geometrical features of segment si , the joint probability
P( f ( j)

1 , f ( j)
2 , . . . , f ( j)

K ) can be empirically approximated
using a group of Gaussian functions [4], and other variables
were the same as in (14). The Eq. (21) came from the model
which employed the segment duration weighting and the
class conditional probability of character recognition [21].
For more reasonable comparison with the proposed method,
it discarded the two empirical weights that were used to bal-
ance the effects of isolated character recognition and the bi-
gram language model. The Eq. (22) came form the model
using empirical segmentation layout estimation for charac-
ter verification [4], which was modified to be the same as
(14) except for its last term for character verification. In our
experiments, we implemented (21) and (22) using the same
text line recognition system as for (14) by substituting the
corresponding segmentation hypothesis evaluation criterion.

The results of the first group of the above experiments
were listed in Table 3, with the following four different con-
ditions:

Cond.1: Segmentation hypothesis evaluation using isolated
character recognition (without negative training)
and/or a bi-gram language model [discarding the
fourth term in (14)].

Cond.2: Segmentation hypothesis evaluation using isolated
character recognition (with the LDA-based neg-
ative training) and/or a bi-gram language model
[discarding the fourth term in (14)].

Cond.3: Segmentation hypothesis evaluation using isolated
character recognition (without negative training)
and character verification and/or a bi-gram lan-
guage model [preserving the third and fourth terms
in (14)].

Cond.4: Segmentation hypothesis evaluation using isolated
character recognition (with the LDA-based nega-
tive training) and character verification and/or a
bi-gram language model [preserving the third and
fourth terms in (14)].

From Table 3, we can see that compared to just using
the posterior probability of a traditional MQDF classifier
(Cond.1) for segmentation hypothesis evaluation, the assis-
tance with either the LDA-based negative training (Cond.2)
or the character verification (Cond.3) was able to greatly
improve the accuracy of text line recognition. With the
LDA-based negative training strategy, the correct recogni-
tion rates were increased by 11.76% (from 52.51 to 64.27%)
and 13.76% (from 59.26 to 73.02%) without and with a
bi-gram language model, respectively. Again it showed the
effect of the proposed LDA-based negative training in resist-
ing against non-characters. On the other hand, with the five-
class MQDF classifier for character verification, the correct
recognition rates were increased by 12.89% (from 52.51
to 65.40%) and 14.46% (from 59.26 to 73.72%) without
and with a bi-gram language model, respectively. It implies
that the features selected for character verification and the
assumptions on their distributions in the five classes were
reasonable. It’s worth noticing that when using the LDA-
based negative training and the character verification simul-
taneously (Cond.4), the correct recognition rates were further
increased, reaching 71.37 and 80.15% without and with a bi-
gram language model, respectively. This is mainly because
the LDA-based negative training of an MQDF classifier has
improved the accuracy of the posterior probability of the clas-
sifier, which rendered both the character recognition and the
character verification [the fourth dimension in (12)] more
proper for segmentation hypothesis evaluation.

The results of the second group of the experiments were
listed in Table 4. In this group, the method 1 used (22)
(modified from Ref. [4]) for segmentation hypothesis evalu-
ation, the method 2 employed (21) (modified from Ref. [21])
for segmentation hypothesis evaluation, and the proposed
method adopted (14) for segmentation hypothesis evaluation.

From Table 4, we can see that the proposed method
achieved the best performance among the three methods.
Compared to method 1, the proposed method improved the
correct recognition rates by 8.96% (from 62.41 to 71.37%)
and 11.08% (from 69.07 to 80.15%) without and with a bi-
gram language model, respectively. Since the method 1 dif-
fers from the proposed method only in the ways of char-
acter verification [the last terms in (22) and (14)], we may
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Table 4 Results of text line
recognition using different
probabilistic models

N/A means that no language
model is applied
Bold values emphasize the best
results achieved in comparison
and their corresponding
conditions in comparison

Method 1 [4] Method 2 [21] Proposed method

(with negative training) (with negative training)

N/A Bi-gram N/A Bi-gram N/A Bi-gram

CR (%) 62.41 69.07 65.09 75.45 71.37 80.15

F (%) 90.98 91.00 87.09 88.71 92.03 92.79

Time (s/line) 22.38 23.81 22.25 24.35 27.99 32.07

say that the five-class MQDF classifier for character ver-
ification in the proposed method can perform better than
the empirical segmentation layout evaluation for character
verification in method 1. On the other hand, compared to
method 2, the proposed method increased the correct rec-
ognition rates by 6.28% (from 65.09 to 71.37%) and 4.70%
(from 75.45 to 80.15%) without and with a bi-gram language
model, respectively. This suggests that the posterior proba-
bilities of a negatively trained MQDF classifier along with
the posterior probabilities of a five-class classifier can per-
form better than just using the class conditional probability
densities of a traditional MQDF classifier for segmentation
hypothesis evaluation. It is worth to note that compared to the
posterior probabilities, the class conditional probability den-
sities of an MQDF classifier were much less affected by non-
character class, since the calculation of the former depended
on all the classes in an MQDF classifier [see the summation
under the fraction in (8)], whereas the calculation of the latter
was independent for each class in the classifier. Specifically,
when using the proposed LDA-based negative training strat-
egy, the class conditional probability densities of an MQDF
classifier can be calculated as p(s|ωi ) = P(ωi |s)p(s)

P(ωi )
=

{
p(s|ωi ,�pos), if i = 1, 2, . . ., N
p(s|�neg), if i = N + 1

, where the probability

P(ωi |s)(i = 1, 2, . . ., N + 1) was defined in (16), the prob-
ability p(s|ωi ,�pos)(i = 1, 2, . . ., N ) was the class condi-
tional probability of a traditional MQDF classifier, and the
probability P(s|�neg) can be calculated according to (18).
The right hand side of the second equal mark implied that the
proposed LDA-based negative training strategy remained the
original value of the class conditional probabilities of each
real character class in a traditional MQDF classifier, which
accorded with the fact that the proposed negative training
did not alter the mean and co-variance of each real character
class in the classifier. As the proposed LDA-based negative
training strategy was able to adjust the posterior probability
of an MQDF classifier while keeping the class conditional
probability density of each real character class unchanged,
in our experiments, we still employed a traditional MQDF
classifier to test the method 2 [21].

Some examples of text line recognition results using the
proposed method were shown in Fig. 10, where the charac-
ters embraced in a rectangle were the ground-truth content of

a text line, and the characters with underscores were the mis-
recognized characters. Errors in text line recognition mainly
arose from the following aspects: the incorrect segmentation
of a text line (such as the under-segmented digits “4 0”, and
“4 1” in the first text line in Fig. 10, which were mis-recog-

nized as characters“ ” and “ ”, respectively), the inac-
curate recognition of an individual character (such as the last

character “ ” in the second text line in Fig. 10, which was
correctly segmented but wrongly recognized as “ ”) and the
ineffectiveness in character verification (such as the two rad-

icals of character “ ” in the third text line in Fig. 10, which
was verified as real characters and recognized as two charac-

ters “ ” and “–”). The above recognition errors suggested
that in order to achieve better performance on unconstrained
handwritten offline Chinese text line recognition, we need
to further improve the performance of the above important
modules in text line recognition.

6 Discussions and conclusion

In this paper, a novel Bayesian-based probabilistic model
was presented for unconstrained handwritten offline Chinese
text line recognition. In this probabilistic model, traditional
isolated character recognition was combined with character
verification to jointly recognize each segment in a realistic
handwritten text line. The character verifier can be trained
with a moderate number of handwritten text lines (just 100
text lines in our experiments) and has shown effectiveness in
improving the accuracies of text line recognition. To enhance
the ability of an isolated character recognizer to distinguish
between characters and non-characters, an LDA-based nega-
tive training strategy is presented. By employing the outputs
of each class in a traditional MQDF classifier and the LDA
transform, the posterior probability of each real character
class or non-character class was re-computed. This strategy
worked better than those either simply discarded a non-char-
acter by thresholding or empirically approximated the prob-
ability distribution of non-characters by k-means clustering.
Experiments of the proposed method testing on 383 text lines
in HIT-MW database showed that both the proposed charac-
ter verification and the LDA-based negative training were
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Fig. 10 Examples of the text line recognition results using the proposed probabilistic model

effective to improve the accuracies of text line recognition.
The character-level recognition rates of realistic handwrit-
ten text lines reached 71.37% without any language model
and 80.15% with a bi-gram language model, respectively,
outperforming the most recent methods tested on the same
data.

In future, we can improve the proposed method for text
line recognition in following three aspects: firstly, to improve
the accuracies of isolated character recognition, methods of
re-computing the scores of each class in a distance classifier
could be considered. Secondly, to further increase the effec-
tiveness of character verification, we may exploit more pow-
erful features reflecting the geometrical characteristics of a
handwritten text line. Lastly, the combination of the proposed
method with some segmentation-free methods could be help-
ful to eliminate the mis-recognition arising from errors in text
line segmentation.
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